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A STUDY OF GAS I N J E C T I O N  I N  THE BOUNDARY LAYER OF 

A HYPERSONIC WIND TUNNEL TO EXTEND 

TKE USEFUL 0PERA.TING RANGE 

By John B. McDevitt 
Ames Research Center 

An experimental study has been made of a method f o r  extending the  useful 
operating range of low-density hypersonic wind tunnels. 
scheme i s  u t i l i z e d  f o r  increasing the  stream momentum i n  the  tes t - sec t ion  
boundary layer  i n  order t o  eliminate upstream feedback of pressure d i s t u r -  
bances in  the  th ick  viscous layer  at  the  tunnel w a l l s .  T e s t  r e s u l t s  obtained 
i n  a helium tunnel a t  Mach numbers from 10 t o  25 indicate  t h a t  energizing the  
tes t - sec t ion  boundary layer  i s  an ef fec t ive  means f o r  avoiding the  feedback 
problem and i s  pa r t i cu la r ly  usefu l  as a means f o r  s t a r t i ng  and maintaining 
steady hypersonic flow i n  the  t e s t  section when models creating large asymmet- 
r i c a l  flow disturbances are  being tes ted.  The minimum tunnel compression 
r a t i o  required f o r  t he  design Mach number i s  also s igni f icant ly  reduced when 
an in jec tor  system i s  used since the energy of the  injected medium contributes 
t o  the energy of t h e  stream entering the  d i f fuser .  A stream energy parameter, 
independent of the  tes t  Mach number, w a s  found t o  be usefu l  i n  cor re la t ing  the  
t e s t  data  r e l a t ing  t o  the  required operating conditions f o r  maintaining s tab le  
hypersonic flow i n  t h e  tes t  section. 

A gas in j ec t ion  

INTRODUCTION 

A charac te r i s t ic  fea ture  of  hypersonic flows i s  the  strong e f f ec t  of 
f l u i d  viscosi ty  i n  producing very th ick  boundary layers  on surfaces immersed 
i n  the f l o w .  
th ick  boundary layer  a t  the tunnel w a l l s  i s  pa r t i cu la r ly  troublesome as down- 
stream pressure disturbances may feed back through the boundary layer  and 
adversely a f f ec t  the flow i n  the  tunnel nozzle. 

I n  the  hypersonic, low-density wind tunnel the presence of a 

Considerable knowledge of t he  performance of hypersonic nozzles has been 
acquired i n  recent years, pa r t i cu la r ly  i n  regard t o  the  operation of hyper- 
sonic helium tunnels. For example, at  the  Ames Research Center experience 
with helium tunnels indicates  t h a t  the  presence of the tunnel-wall viscous 
layer  does not noticeably a f f ec t  normal aerodynamic t e s t ing  procedures at 
free-streamMach nwcibers of  about 10 f o r  tunnel driving pressures as low as 
200 psia .  A t  t e s t  Mach numbers of about 20, it w a s  found t h a t  a feedback 
problem could arise i n  the  force t e s t i n g  of asymmetric configurations i f  t he  
tunnel were operated at  driving pressures of  less than about 1.500 ps ia .  
ever, when higher pressures, g rea te r  than about 2000 psia,  were used it w a s  
foiind t h a t  consistent and r e l i a b l e  tes t  da ta  could be obtained. 

How- 



As the  t es t  Mach number i s  increased above 20, t he  w a l l  viscous e f f e c t s  
become increasingly troublesome. Hypersonic Viscous e f f ec t s  i n  a helium tun- 
ne l  at t e s t  Mach numbers o f  about 30 are  discussed i n  reference 1. I n  t h i s  
case, it w a s  found t h a t  the tunnel flow w a s  influenced by the  model shape and 
s ize  t o  t he  extent  t ha t  impact probes with the  same shape as the  models t o  be 
studied were required f o r  ca l ibra t ing  the  tunnel. 

The experience with hypersonic helium tunnels may be summarized, at least 
i n  a qua l i ta t ive  manner, as follows: A t  t es t  Mach numbers of about 10, the  
w a l l  viscous-layer feedback problem i s  not present t o  a noticeable degree; at  
Mach numbers of about 20, the  feedback problem can usual ly  be eliminated by 
operating the tunnel at suf f ic ien t ly  la rge  supply pressures;  and a t  Mach num- 
bers  of about 30, a d i r ec t  coupling between the  tes t  model flow f i e l d  and the 
w a l l  viscous layer  e x i s t s  such t h a t  special  f low-calibration techniques must 
be used f o r  each model studied. 

A method f o r  eliminating the  feedback problem, and thereby extending the  
usefu l  operating range of hypersonic nozzles, i s  described i n  t h i s  report .  A 
gas-injector system i s  used t o  increase the  level  of the stream momentum i n  
the  tes t - sec t ion  boundary layer,  but  without disturbing the  high-speed, inv is -  
c id  core of the t e s t  section. I n  t h i s  concept t he  momentum of  the injected 
gas i s  intended t o  serve as an ef fec t ive  b a r r i e r  t o  prevent upstream feedback 
of pressure disturbances near the tunnel w a l l s .  The usefulness of t h i s  con- 
cept 
t h i s  
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was investigated i n  the  Ames 14-inch helium tunnel and the r e s u l t s  of 
invest igat ion are presented i n  t h i s  report .  

NOTATION 

Primary Symbols 

cross-sectional area, sq in .  

cross-sectional area of sonic throat ,  sq in .  

correlat ion parameter (see eq. (6) o r  ( 7 ) ) ,  lb/sq i n .  

numerical constant i n  equations (1) or (2)  

r a t e  of mass flow, slugs/sec 

Mach number 

t o t a l  pressure (stagnation pressure if  the  gas were brought t o  rest 
i sen t ropica l ly) ,  p s i a  

stagnation pressure behind normal shock ( p i t o t  pressure),  p s i a  

s t a t i c  pressure, p s i a  
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pressure i n  downstream low-pressure storage spheres when 
hypersonic flow i n  the  tunnel t e s t  section breaks down, ps i a  

dynamic pressure, p s i a  

sonic t h r o a t  opening f o r  the  annular in jec tor  (see f i g .  lo), i n .  

t o t a l  temperature, "R 

v e r t i c a l  displacement from tunnel center l i ne ,  i n .  

angle of a t tack,  deg 

Subscripts 

i condition corresponding t o  isentropic  channel flow 

N nominal value 

co free-stream condition 

( ) e x i t  propert ies  of in jec ted  gas at the  downstream e x i t  of the in jec tor  
system 

APPARATUS A.ND TESTS 

The Ames 14-inch helium tunnel, shown schematically i n  f igure  1, w a s  used 
i n  t h e  present experimental study. This f a c i l i t y  i s  of the blowdown type and 
uses a common contoured nozzle with interchangeable throa t  sections t o  provide 
nominal tes t - sec t ion  Mach numbers of 10, 17, 21, and 25. Typical p i t o t -  
pressure surveys i n  the t e s t  section are shown i n  f igure  2. The tunnel d i s -  
charges in to  several  large spheres which a re  evacuated t o  about 0 .2  ps i a  p r io r  
t o  each t e s t  run. Test run times of 2 minutes o r  more a re  available f o r  each 
of the nominal Mach numbers. 

The experimental study w a s  conducted i n  two par t s .  For the  f i r s t  par t ,  
which w a s  qui te  preliminary, t he  in jec tor  system consisted of a se r i e s  of 
s m a l l  nozzles i n s t a l l e d  around the  inside periphery of t he  primary nozzle near 
the upstream edge of the t e s t  section. For the  second pa r t  the  tunnel t e s t  
section w a s  removed and replaced by an "open" t e s t  sect ion having an annular 
i n j ec to r  incorporated a t  the  upstream edge of the  t e s t  section. Detailed 
descriptions of the  geometry of the t w o  in jec tor  systems used w i l l  be deferred 
t o  l a t e r  sections of  t h i s  report .  

The e f f ec t  of  gas in jec t ion  on the performance of the  tunnel w a s  deter-  
mined i n  a qua l i ta t ive  manner by measuring the  pressure, F,,, i n  the down- 
stream vacuum spheres at  breakdown of t he  hypersonic f l o w  i n  the t e s t  section. 
A p i t o t  rake w a s  i n s t a l l e d  i n  the  tunnel t e s t  sect ion f o r  determining the  
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manner i n  which gas in jec t ion  influenced the  tunnel flow and f o r  determining 
when breakdown of the  f l o w  occurred. The p i t o t  pressures were measured by 
diaphragm-type, strain-gage pressure transducers. The impact pressures f o r  
a few representat ive p i t o t  tubes across the  t es t  section were converted t o  
d i g i t a l  form and displayed visual ly  so  t h a t  the  behavior of the  flow could be 
monitored during each tes t  run. 

The breakdown of the flow w a s  ea s i ly  determined i n  some cases but  not i n  
others.  When an in j ec to r  system w a s  used i n  the  proper manner ( i . e . ,  i n  the 
underexpanded condition),  the  flow i n  the  t es t  section w a s  invariant with time 
u n t i l  breakdown occurred, which appeared t o  be instantaneous across the  t e s t  
section. Without an in jec tor  system the measured impact pressures varied with 
run time. Changes i n  impact pressures i n  the  tunnel boundary layer  would be 
noted f i rs t ,  followed by changes i n  the cent ra l  high-speed core, beginning at 
the  outer edge and moving inward toward the  tunnel center l i ne .  The deter io-  
r a t ion  of the flow w a s  qui te  rapid once the high-speed core w a s  affected,  with 
complete breakdown of t he  hypersonic flow occurring within a few seconds a f t e r  
the f l o w  at the  tunnel center l i n e  had abruptly changed f r o m  the  i n i t i a l  
steady value. The run time when flow breakdown occurs w a s  a r b i t r a r i l y  defined 
i n  cases of t h i s  nature as the time when the  impact pressure a t  the tunnel 
center l i n e  w a s  noticeably affected.  

Although most  of the information presented i n  t h i s  report  w a s  obtained 
from pressure measurements, a d i r ec t  measure of the  effectiveness of an in jec-  
t o r  system i n  a l l ev ia t ing  a tunnel-wall feedback problem w a s  made by force 
t e s t ing  a blunt ,  asymmetric model f o r  which d i f f i c u l t y  had been encountered 
i n  the  pas t  i n  obtaining r e l i a b l e  t e s t  data  a t  a free-stream Mach number of 21. 
For these tes ts  a conventional sting-mounted model and strain-gage balance 
assenibly were used. 

RESULTS AND DISCUSSION 

As  mentioned previously, the  present experimental study w a s  conducted i n  
two par ts .  The i n i t i a l  t e s t s  were made using a d iscre te  mode of gas in jec t ion  
f o r  energizing the  tunnel boundary layer.  The second phase of the investiga- 
t i o n  involved the  use of an annular in jec tor .  The t e s t  results obtained from 
the  two invest igat ions w i l l  be presented separately since the tes t  apparatus 
used w a s  qui te  d i f f e ren t  i n  the  two cases. The information obtained f r o m  the  
two s tudies ,  however, i s  complementary, and, as a result of both s tudies ,  cer-  
t a i n  conclusions are evident regarding the effectiveness of  the present 
approach i n  extending the useful  operating range of a low density, hypersonic 
tunnel. 

Discrete Mode of In jec t ion  

The i n i t i a l  t e s t s  were made using the crude in j ec to r  system shown i n  
f igure  3. A s e r i e s  of e ight  s m a l l  nozzles were i n s t a l l e d  around the inside 
periphery of the  tunnel a t  the  upstream edge of t he  t e s t  section. These s m a l l  
nozzles were designed t o  have an e x i t  Mach number, i f  underexpanded (exit  
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s t a t i c  pressure grea te r  than the loca l  free-stream s t a t i c  pressure i n  the  t e s t  
sect ion) ,  of 12.5. As w i l l  be demonstrated subsequently, the proper use of an 
in j ec to r  system i n  the  present application i s  i n  the  underexpanded condition 
and t h i s  requires t h a t  t he  supply pressure of the  gas t o  the  in jec tors ,  

( p t l )  in jec tors  
, s a t i s f i e s  t he  inequal i ty  

where the  quantity pl/ptl i s  evaluated a t  the  tes t - sec t ion  Mach number f o r  
t he  tunnel and a t  the  design "exit" Mach number f o r  the  in jec tors .  For the  
present case, where the  in j ec to r  nozzles were designed f o r  an e x i t  Mach num- 
be r  of 12.5, the  requirement f o r  underexpanded flow i s  indicated i n  f igure  4. 

A pitot-survey rake, not shown i n  f igure  3, w a s  i n s t a l l e d  i n  the tunnel 
t es t  section and used t o  determine the manner i n  which the  gas in jec t ion  
a l t e r ed  the  f l o w  i n  the  t e s t  section and t o  determine when breakdown of the  
f l o w  occurred. 

Effect of in jec tor  system on tunnel performance.- The measured pressure ____  - ~ _ _  .~ ___ 
i n  the downstream vacuum spheres a t  breakdown of  the hypersonic flow i n  the  
t e s t  section, Hsp, i s  considered here t o  be a measure of the  "performance" of 
the  tunnel. The e f f ec t  of t he  in j ec to r  system on tunnel performance w a s  
determined f o r  a wide range of t e s t  conditions with helium as the in jec t ion  
medium. A few t e s t  runs were a l s o  made with a i r  as the  in jec t ion  medium. 
(Since it w i l l  be convenient, f o r  the  most p a r t  i n  the  following discussion, 
t o  present normalized values of the  measured performance data, the ac tua l  m e a -  
sured values of 
t ab le  I . )  

Hsp w i l l  not be discussed but  these values are tabulated i n  

Measured values of pSp, normalized with respect t o  conditions of no m a s s  
in ject ion,  are  presented i n  f igure  5 f o r  helium gas in jec t ion .  For the tunnel 
nominal Mach number of 10, which i s  l e s s  than the  design Mach number of the  
in jec t ion  nozzles, data  were obtained with the  in jec t ion  nozzles both over- 
expanded and underexpanded. I n  the  overexpanded condition, considered here 
t o  be "off design," t he  e f f ec t  i s  detrimental i n  t h a t  t he  pressure i n  down- 
stream storage spheres a t  breakdown of the  hypersonic flow i n  the t e s t  section 
w a s  decreased. I n  the underexpanded condition the  nozzles operate supersoni- 
ca l ly  with fur ther  expansion occurring within the  tunnel boundary layer.  
t h i s  case the  e f f ec t  i s  benef ic ia l .  The t e s t  results f o r  nominal Mach numbers 
of 17, 21, and 25, shown i n  f igure  5, w e r e  obtained with the in jec t ion  nozz le s  
underexpanded i n  a l l  cases. 

I n  

Since a common in j ec to r  system and t e s t  sect ion were involved i n  these 
t e s t s ,  the  mass f l o w  of the  in j ec to r  system, r e l a t i v e  t o  t h a t  f o r  the  tunnel, 
varied considerably; hence, it i s  informative t o  present the  r e s u l t s  i n  terms 
of the  r a t i o  of mass flows, as i s  done i n  f igure  6. 
sented i n  th ip  f igure  s m a r i z e  the e f f ec t  of t he  in j ec to r  system on tunnel 
performance. It i s  apparent t h a t  th i s  r a the r  crude in jec t ion  system i s  qui te  

The t e s t  r e s u l t s  pre-  

5 



ef fec t ive  i n  r a i s ing  the l e v e l  of the  downstream di f fuser  pressure a t  which 
the tunnel i s  able t o  operate. For example, with helium in jec t ion  at a m a s s -  
flow r a t e  equal t o  tha t  f o r  t he  tunnel, t he  over -a l l  compression r a t i o  
required t o  maintain hypersonic flow i n  t h e  tes t  sect ion i s  reduced t o  
s l i gh t ly  less than one-half t h a t  for no m a s s  in jec t ion .  It should be recog- 
nized, however, t h a t  the  use of t h i s  in jec t ion  system does not s ign i f icant ly  
change the avai lable  running t i m e  of the  tunnel s ince the t o t a l  mass flow i s  
increased in  about t he  same proportion as i s  Fsp. 

Correlation of performance data . -  It w i l l  be demonstrated here t h a t  a 
parameter proportional t o  t h e  stream energy may be used t o  cor re la te  t e s t  da ta  
r e l a t ing  t o  t he  required operating conditions f o r  maintaining hypersonic flow 
i n  the  t e s t  section. I n  a helium tunnel of the  type considered here the 
thermal energy of  the stream i s  negligibly s m a l l  and the  impact pressure may 
be used as a convenient measure of the  stream energy per u n i t  volume of  flow. 
A t  hypersonic Mach numbers the  following approximate relat ionships  may be used: 

_ _ ~ ~ ~  

A i r  

Helium 

where A* and A i  are  the cross-sectional areas of the  sonic throat  and the  
hypersonic inv isc id  stream, respectively,  and M i  i s  t he  hypersonic Mach num- 
ber  corresponding t o  A i .  

It i s  in te res t ing  t o  note tha t ,  for a 

(Pt,Ai) a,r 
(3)  

which implies t ha t  the use of a i r  as  an in jec t ion  medium f o r  ra i s ing  the energy 
l e v e l  should give s l i gh t ly  b e t t e r  r e s u l t s  than the  use of helium. 
with a i r ,  the  mass f l o w  i s  considerably la rger .  The mass-flow r a t e s  are,  i n  
the t w o  cases, 

However, 
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Helium 

When an in jec tor  system i s  used i n  conjunction with the  hypersonic tunnel, 
t he  stream energy of both systems i s  considered t o  be additive.  A parameter 
proportional t o  the  average energy per u n i t  volume i n  the  tes t - sec t ion  stream 
i s  the  following, 

h e s t  section 

The quantity Pt2Ai may be expressed i n  terms of the  driving pressure, pt-, 
and the  sonic t h r o a t  area, A*, according t o  equatiors (1) and (2 ) .  Thus, an 
a l t e rna te  expression f o r  E i s  the  following, 

(7 ) 
Ai 3 A* A* 

A i  Atest sec t io  injectors 

where 
might be noted t h a t  t he  dri.mensiona1 u n i t s  of the  energy parameter, as used 
here, a re  the same as those f o r  the  driving pressure, p t l . )  

k = 1.67 f o r  air ,  k = 1.43 for helium (see eqs. (1) and ( 2 ) ) .  (It 

The measured pressures i n  the  downstream low-pressure spheres at break- 
down of the  tunnel hypersonic f l o w  are  presented i n  f igure  7 with E as  the  
correlat ing parameter. D a t a  are  presented f o r  no m a s s  in jec t ion  and with mass 
in jec t ion  a t  the  highest r a t e s  used f o r  each of the nominal tes t - sec t ion  Mach 
numbers. Within the  accuracy of the  t e s t  procedure the  data  cor re la te  remark- 
ably well  ( the  o f f se t  near t he  or ig in  i s  believed t o  be the  r e s u l t  of viscous 
losses  i n  the tunnel, d i f fuser ,  and piping t o  the vacuum spheres).  Note tha t  
the  Mach number does not en ter  as a s ignif icant  parameter. This i s  i n  con- 
trast  t o  the usual  method of presenting tunnel compression r a t i o  as a function 
of Mach number as i s  i l l u s t r a t e d  i n  f igure  8. 

Pitot-pressure surveys.- A few pitot-pressure surveys were conducted t o  
determine the  e f f ec t  of t he  boundary-layer gas in jec t ion  on the  flow charac- 
t e r i s t i c s  i n  the tunnel t e s t  section. The p i t o t  surveys indicated t h a t  the  
in j ec t ion  process did not a l t e r  the  f l o w  charac te r i s t ics  i n  the central ,  high- 
speed core i n  the region immediately adjacent t o  the  exit  of the  smallnozzles.  
Downstream from the  e x i t  of  the  s m a l l  nozzles at a locat ion equal t o  the  tun- 
n e l  diameter (about 1 4  i n . ) ,  the  mixing of t h e  injected gas with the  main tun- 
n e l  stream w a s  such as t o  a f f ec t  the  outer portion of  the  high-speed core as 
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well as the  tunnel boundary layer .  A t  a downstream locat ion equal t o  about 
two tunnel diameters, the  influence of t he  in jec ted  gas w a s  f e l t  throughout 
the t e s t  section (a more or less complete mixing of the streams). 
surements indicated t h a t  tunnel boundary-layer in jec t ion  i s  f eas ib l e  i n  tha t  
the high-speed port ion of the  tunnel stream immediately adjacent t o  the  injec-  
t o r  system i s  not affected by the  in jec t ion  process and t h i s  region may be 
used i n  the  normal way f o r  aerodynamic force t e s t ing  of  sting-mounted models. 
It i s  recognized, however, t h a t  i n  aerodynamic s tudies  of model base flows 
and/or wake charac te r i s t ics ,  a problem could arise if  the  in jec ted  stream s ig-  
n i f i can t ly  a l t e r s  the  geometry of the  model wake. 

These mea- 

Effectiveness of the in jec tor  system i n  eliminating feedback i n  the tun- 
n e l  boundary layer . -  Some information regarding the effectiveness of t he  injec- 
t o r  system i n  preventing feedback a t  the  tunnel w a l l s  w a s  obtained by measuring 
the  forces  on a blunt,  asymmetric model f o r  which d i f f i c u l t y  had been encoun- 
tered i n  the  pas t  i n  obtaining r e l i ab le  tes t  data  at a Mach number of 21. 

The configuration involved w a s  a blunt  half-cone with a semivertex angle 
The measured drag coef f ic ien ts  f o r  of 30' (see sketch at the  top of f i g .  9 ) .  

t h i s  model a t  angles of a t tack  (measured with respect t o  the  f l a t  upper sur- 
face of t he  model) f rom -12' t o  +12O are  presented i n  f igure  9 f o r  tunnel 
driving pressures of 1400 and 2200 psia.  The data  presented i n  the  upper half  
of t h i s  f igure  were obtained without t he  use of the  in jec tor  system. For the  
higher tunnel driving pressure the t e s t  data  (square symbols) are  believed t o  
be reasonably accurate since they agree closely with other t e s t  data  f o r  t h i s  
configuration a t  hypersonic speeds. A t  the  lower tunnel driving pressure, 
data a re  presented f o r  t w o  t e s t  runs ( c i r cu la r  symbols, runs 1 and 2 ) .  For 
t e s t  run 1 the  model w a s  a t  zero angle of a t tack  during the  s t a r t i ng  of the 
tunnel f l o w ,  then pitched downward t o  -12' and data were acquired i n  2' incre-  
ments from -12' t o  +12O. 
hence appeared t o  be more o r  less symmetric t o  the  oncoming f l o w )  during the 
s t a r t i ng  of the  f l o w .  The e r r a t i c  behavior of the  t e s t  data  f o r  these t w o  
runs i s  believed t o  be due t o  a coupling between t h e  asymmetric f l o w  f i e l d  of 
the model and the  tunnel boundary layer .  

For t e s t  run 2 the  model w a s  i n i t i a l l y  a t  -12' (and 

In  the  lower half  of f igure  9 data a re  presented f o r  the case where the 
in jec tor  system w a s  used with the  same driving pressure as the tunnel 
(p t l  = 1400 p s i a ) .  
stream of the  in jec tor  nozzles, but i n  a region known from p i t o t  surveys t o  be 
unaffected by the  in jec ted  gas.)  
driving pressure (pt. = 2200 ps ia )  are  included f o r  comparison purposes and, i n  
t h i s  case, the  differences i n  the  t e s t  data  f o r  the runs are within the  experi-  
mental accuracy of t he  t e s t s .  It i s  qui te  apparent t h a t  the  in jec tor  system 
w a s  e f fec t ive  i n  preventing the coupling between the  model flow f i e l d  and the 
tunnel boundary layer .  

(For t h i s  t e s t  the  model w a s  located immediately down- 

The t e s t  data  obtained at the  higher tunnel 

Annular In jec t ion  

The previous r e su l t s ,  obtained with several  small nozzles in s t a l l ed  
within the  tunnel, demonstrated the  f e a s i b i l i t y  of gas in jec t ion  as a means 
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f o r  improving the  performance and extending the  usefulness of hypersonic 
f a c i l i t i e s .  A more e f f i c i e n t  method f o r  energizing the  tunnel boundary layer 
might be the  use of an annular in jec tor .  I n  order t o  explore t h i s  p o s s i b i l i t y  
the t e s t  section of the  tunnel (see f i g .  1) w a s  removed and replaced by a box- 
l i k e  s t ructure  containing an "open" test sect ion and the  annular i n j ec to r  
system. 

The annular i n j ec to r  i s  shown schematically i n  figure 10. A s l id ing  
adjustment, as indicated i n  f igure  10, permitted the  in j ec to r  f i r s t - t h r o a t  
area t o  be varied. 
sion") w a s  removable. 
entrance t o  the  tunnel d i f fuser .  
cone model were a l so  provided, as shown i n  the  photograph of f igure 11. The 
cone model had a base diameter of 3 inches and could be mounted a t  angles of 
a t tack  of Oo, +loo, and +20°. When mounted at  a la rge  angle of attack, t h i s  
model induced a large asymmetric f l o w  disturbance i n  the  tes t  section. 
Although aerodyslamic forces  on the  cone were not measured, the  pitot-survey 
apparatus provided a means f o r  determining the  s t a b i l i t y  of the tes t - sec t ion  
flow. Helium w a s  used exclusively as the  in jec ted  gas f o r  the  t e s t s  with the  
annular in jec tor  and care  w a s  taken t o  operate the  in j ec to r  system i n  the  
underexpanded condition i n  a l l  cases. 

The downstream portion of t he  annulus (" injector  exten- 
A scoop, adjustable fo re  and aft, w a s  used as the  

A pitot-survey rake and a 20' half-angle 

Preliminary t e s t s  were made with and without the  " injector  extension" 
(see f i g .  10) .  It w a s  determined, at l e a s t  within the  accuracy of t he  measure- 
ments, t ha t  the  presence of the  in jec tor  extension did not noticeably a f f ec t  
t he  performance cha rac t e r i s t i c s  of t h i s  i n j ec to r  system. The extension w a s  
then discarded and not used i n  any of the  tes t  r e s u l t s  which follow. 

Although the  primary in t en t  of the  present invest igat ion w a s  t o  evaluate 
the  performance cha rac t e r i s t i c s  of an annular i n j ec to r  system, some informa- 
t i o n  regarding the  r e l a t i v e  performance of open and closed t e s t  sections and 
the  e f f ec t  of a conical t e s t  model on tunnel performance were obtained. A 
comparison of tunnel performance f o r  closed and open t e s t  sections i s  pre- 
sented i n  f igure  12  f o r  a nominal t e s t  Mach number of 21. Since the magnitude 
of 
sonic f l o w  i n  the t e s t  section) i s  considered here t o  be a measure of the  
performance of the  tunnel, it i s  evident from the  da ta  of f igure  12  t h a t  t he  
tunnel performance decreases considerably as the  length of the f r e e  j e t  
increases. 

FSp (pressure i n  the  downstream vacuum spheres a t  breakdown of the  hyper- 

The presence of a conical t e s t  model has a subs tan t ia l  e f f ec t  on the  
tunnel performance, a t  least f o r  a t e s t  Mach number of 21, as i s  indicated by 
the  data  presented i n  f igu re  1.3. When the cone was  at zero angle of a t tack,  
o r  removed from the  t e s t  section, t he  tunnel could be s t a r t e d  f o r  tunnel dr iv-  
ing pressures as low as 1000 psia .  
essary, however, t o  place the  d i f fuser  scoop near the model as shown i n  t he  
sketch a t  the  top of f i g .  13.)  
hypersonic flow i n  the tunnel could be establ ished only when the highest d r iv-  
ing pressure (p t l  = 2000 ps ia )  w a s  used. When the in j ec to r  system w a s  used 
momentarily during the  s t a r t i n g  phase, it w a s  found t h a t  f l o w  could a l s o  be 

(When the  cone model w a s  used it w a s  nec- 

For the  cone model at 20' angle of a t tack  
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established with the  cone a t  
1500 ps ia  but  a t  a driving pressure of 1000 ps i a  the  tunnel could not be 
"startedT' even with the  help of  t he  in jec tor  system. 

a, = 20' f o r  a tunnel driving pressure of 

Effect of  annular in jec tor  system on tunnel_performance.- The e f f ec t  of 
the  annular i n j e c t o r  on tunnel performance f o r  a nominal tes t - sec t ion  Mach 
number of 21 i s  i l l u s t r a t e d  i n  f igure  14. The sonic throa t  opening, t*, f o r  
t he  in jec tor  w a s  0.005 inch and the  estimated e x i t  Mach number of the  in jec ted  
gas w a s  about 13. In  the  left-hand s ide of f igu re  14, performance data  are 
presented f o r  tes ts  conducted with the  cone model a t  angles of a t tack  of 0' 
and 20'. 
large asymmetric disturbance i n  the tunnel by pitching the  cone t o  a large 
angle of a t tack  i s  t o  reduce s l i g h t l y  the  performance of  the tunnel. 
the in jec tor  system (h in jec tor  = 0) ,  the  e f f ec t  of model angle of a t tack  i s  
large.  

With the  in jec tor  system operating, the  e f f ec t  of introducing a 

Without 

For the t e s t s  with the  cone model a t  zero angle of attack, the perfor- 
mance data, normalized with respect t o  conditions of no mass inject ion,  are  
correlated i n  the right-hand s ide of f igure  14. As  i n  t he  case of the  in jec-  
t o r  system f o r  the  closed t e s t  section, described e a r l i e r  i n  t h i s  report ,  the  
e f f ec t  of gas in jec t ion  i s  t o  improve s igni f icant ly  the  performance of t he  
tunnel. 

The ac tua l  measured values of psp have been correlated i n  f igure  1.5 
In  t h i s  f igure  using the  stream energy parameter defined by equation ( 6 ) .  

representative data  a re  presented f o r  t e s t s  a t  nominal tes t - sec t ion  Mach num- 
bers  of 10 and 21  with the  cone model i n s t a l l e d  a t  
curve i s  nearly iden t i ca l  with the cor re la t ion  curve presented e a r l i e r  ( f ig .  7) 
f o r  the d iscre te  i n j ec to r  system. However, a d i r ec t  comparison of the perfor-  
mance of the  two in jec tor  systems cannot be made since the annular in jec tor  w a s  
applied with an open t e s t  section and with a cone model, whereas the  d iscre te  
in jec tor  system w a s  used with a closed t e s t  section and without a cone model. 

t ions  downstream f rom the. in jec tor  are presented i n  f igure  16 t o  i l l u s t r a t e  
the extent t o  which the injected gas has mixed with the tunnel stream. Imme- 
d i a t e ly  downstream of the  in j ec to r  the influence of the  injected gas i s  con- 
f ined  t o  the tunnel boundary layer  and the  adjacent high-speed core of the  
tunnel, which has not been affected,  may be used f o r  aerodynamic force t e s t i n g  
of models. 

CL = 0'. The correlat ion 

P i t o t  -pressure surveys. - Typical p i t o t  -pressure surveys a t  several  sta- 

The p i t o t  rake used i n  the  present t e s t s  a l s o  provided some information 
regarding feedback i n  the tunnel boundary layer  when the cone model w a s  
i n s t a l l ed  a t  angle of a t tack  so as t o  induce a large asymmetric disturbance 
t o  the f l o w .  The var ia t ions of p i t o t  pressure a t  several  ve r t i ca l  locations 
i n  the t e s t  section with run time are  presented i n  f igure  17 f o r  a nominal 
t e s t  Mach number of 21, tunnel driving pressure of 1500 psia ,  and cone model 
a t  
ments obtained without the  in jec tor  system although the in jec tor  w a s  used 
momentarily (immediately p r io r  t o  t he  run and during the  f i r s t  few seconds) t o  
start  the tunnel f l o w .  The so l id  symbols represent measurements obtained a t  
the  same t e s t  conditions but  with the in j ec to r  operating at a mass-flow r a t e  
equal t o  t h a t  f o r  the  tunnel. 

a = 20' (see sketch a t  top of f i g .  ) . The open symbols represent measure- 

When the in j ec to r  system w a s  not used, the  
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measured p i t o t  pressure changed continuall..y i n  the boundary-layer region of 
the tunnel, but measurable changes i n  the  high-speed core of the  tunnel did 
not occur u n t i l  immediately p r i o r  t o  breakdown of t he  flow. 
system i n  use, no measurable change i n  any of the  p i t o t  measurements w e r e  
noted and breakdown of t he  flow w a s  instantaneous across the  t e s t  section. 
These r e s u l t s  indicate  t h a t  the  present gas-injection scheme i s  qui te  effec-  
t i v e  i n  i so l a t ing  the  main tunnel flow f r o m  downstream disturbances. 

With the  in jec tor  

Effect  of  in jec tor  sonic throa t  geometry on performance.- The various 
t e s t  r e s u l t s  presented previously i n  t h i s  report  f o r  t he  annular i n j ec to r  were 
obtained with an annular sonic throa t  opening, t*, (see f i g .  10) of 0.005 inch. 
I n  this  case the  Mach number a t  the  e x i t  of the in jec tor  w a s  estimated t o  be 
about 13. 
number of about 17, w a s  a lso t r i e d  and the  performance f o r  the  two cases a re  
compared i n  f igu re  18. Within the  accuracy of the  measurements, e s sen t i a l ly  
the  same performance w a s  obtained at equal mass-flow rates. 

A sonic-throat opening of 0.0025 inch, which provides an e x i t  Mach 

Since the annular opening of the  sonic throat ,  t*, i s  necessarily small, 
and d i f f i c u l t  t o  s e t  accurately and maintain, a b r i e f  invest igat ion w a s  made 
of a sonic t h r o a t  with 48 discre te  holes, equally spaced azimuthally, i n  place 
of the  annular s l o t .  The performance of t h i s  in jec tor  th roa t  w a s  s l i gh t ly  
in fe r io r  t o  tha t  f o r  a continuous annular sonic t h r o a t  (see f i g .  19). 

CONCLUDING REMARKS 

The present experimental study has demonstrated the  f e a s i b i l i t y  of gas 
in jec t ion  in to  the  boundary layer  of a low-density hypersonic tunnel as a 
means f o r  extending the  usefu l  operating range of the  tunnel.  I n  general, 
the  experimental t e s t s  indicated t h a t  energizing the  tes t - sec t ion  boundary 
layer  i s  an e f fec t ive  means of avoiding upstream feedback of pressure d i s tu r -  
bances i n  the  th ick  viscous layer  a t  the tunnel w a l l s  and i s  pa r t i cu la r ly  use- 
f u l  as a means f o r  s t a r t i ng  and maintaining hypersonic f l o w  i n  t he  t e s t  
section when models creat ing large asymmetrical f l o w  disturbances are  being 
tes ted .  

The required tunnel compression r a t i o  i s  a l s o  s ign i f icant ly  reduced when 
an in jec tor  system i s  used since the  energy of the  injected medium contributes 
t o  the  energy of t he  stream entering the  diffuser .  A stream energy parameter, 
independent of t he  t e s t  Mach number, w a s  found t o  be usefu l  i n  correlat ing the 
tes t  data r e l a t ing  t o  the  required operating conditions f o r  maintaining s tab le  
hypersonic flow i n  the  t e s t  section. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  May 5, 1965 
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TABLE I.- SUMMARY OF TEST RESULTS FOR THE DISCRETE INJECYOR SYSTEM 

[See fig. 31 
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Figure 1.- Schematic diagram of the  Ames 14-inch helium tunnel. 
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Figure 2.- Typical pitot-pressure surveys i n  the  t e s t  section of the  Ames 14-inch helium tunnel. 
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Figure 3 .- Schematic diagram of d iscre te  in jec tor  system. 
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Figure 4.- Pressure requirement for operation of t h e  in jec tor  nozzles i n  the  
"underexpanded" condition ( in j ec to r  e x i t  design Mach number of 12.5). 

18 



2.5 - 

2.0 

.5 

0 

Discrete injector system (fig. 3) , helium injection 

100 psia 
(Ptl)t"nnel 

MN =IO , 

-Off design 

- 

I / 

9 

W H O  ' 

psia - MN - 
17 IO00 
21 2000 
25 2500 

I I 
2.5 5.0 7.5 10.0 

(ptl) injectors 

("lltunnel 

0 .25 5 0  .75 I .oo 
(41). injectors . 

(ptl)+unnel 

Figure 5.- Performance of discrete  injector  system with helium gas injection. 
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Figure 6.- Comparison of i n j e c t o r  performance for helium and air i n j ec t ion .  
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Figure 7.- Correlat ion of measured pressures i n  t h e  downstream spheres a t  break- 
down of t h e  tunnel  hypersonic flow with a stream energy parameter. 
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Figure 8.- Variation of tunnel compression r a t i o  with Mach number (data  from 
t ab l e  I, &injectors = 0 ) .  
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Figure 9.- Effectiveness of t h e  in j ec to r  system i n  eliminating t h e  tunnel  
boundary-layer feedback problem. 

23 



Note: all dimensions in inches Sliding adjustment for varying 
injector sonic-throat area 

Injector extension 
(removable) 

a- 

3 Diffuser - - 1-1-1- Test ! - - -  

Radius 7.6 7.85 7.25 

section 

Variable 
( I8 inches max) 

MN 

I 
I 

I 
I 

I 
I I Original test-section contour 
I 

Tunnel station @ 
I 
I 
I 
I 6 

Figure 10 .- Schemahic diagram of annular i n j ec to r .  
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Figure 16.- Pitot-pressure surveys indicating the domain of influence of the injected gas. 
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Figure 19.- Comparison of injector performance for an annular sonic throat and 
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